Knigi-for.me

Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид

Тут можно читать бесплатно Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид. Жанр: Зарубежная публицистика издательство , год . Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Ознакомительная версия. Доступно 16 из 81 стр.

Элементы в столбцах слева в высшей степени активны химически. Водород легко взрывается (прекрасный пример – катастрофа «Гинденбурга»2), а Литий (Li), Натрий (Na) и Калий (K) полыхнут пламенем, если уронить их в пробирку с водой. Они любят соединяться с элементами из предпоследнего столбца справа, которые тоже охотно вступают в химические реакции, и предпочитают формировать очень стойкие сложные соединения, например соль (NaCl). Но элементы, занявшие самый правый столбец, никакими «уговорами» не объединить ни с их соседями, ни с любым другим элементом таблицы3. Чтобы понять, почему поведение различных групп атомов столь радикально отличается, нам потребуется представить модель Нильса Бора в количественном отношении и рассмотреть квантовую природу атомного мира.

Хранители времени. Реконструкция истории Вселенной атом за атомом - img_13

Рис. 4.1. Периодическая таблица химических элементов. Показаны атомные номера и символы для каждого из 118 типов атомов. Шкала полутонов и толщина контуров призваны проиллюстрировать природу электронных оболочек, речь о которых пойдет ниже. В самом левом столбце каждая строка обозначает начало нового энергетического уровня, но n = 3 и n = 4 частично совпадают (иными словами, за элементом под номером 18, Аргоном [Ar], имеющим три электронные оболочки [n = 3], следуют Калий [K] и Магний [Mg], у которых по четыре электронных оболочки [n = 4], после чего у элементов 21–30 вновь n = 3). Совмещения усложняются по мере того, как мы движемся все дальше, вследствие чего строки 57–71 и 89–103 располагаются в самом низу таблицы. Подробнее см. рис. 4.3 и 4.4

Как мы отмечали в третьей главе, электроны не похожи на планеты (равно как и на уменьшенные песчинки). Они действуют в квантовом мире, и это означает, что их поведение представляет собой сочетание тех свойств, которые мы приписываем частицам, а также тех свойств, которые мы приписываем волнам. И частицы, и волны могут передавать энергию (эту концепцию мы более подробно изучим в дальнейшем) из одного места в другое. Если я брошу вам бейсбольный мяч, а вы его поймаете, то вы почувствуете боль из-за кинетической энергии (энергии движения), которую я сообщил мячу, совершив бросок. По мере того как частица перемещается с места на место, она переносит с собой энергию. Точно так же ее переносит и волна, хотя в этом случае в движении какого-либо вещества от меня к вам нет необходимости. Если мы оба возьмемся за концы веревки, я могу резко дернуть свой конец вверх и вниз, и волна, прошедшая через веревку, передаст это движение вашей руке, в то время как частицы веревки, которые я держу в своей ладони, останутся на месте.

Хранители времени. Реконструкция истории Вселенной атом за атомом - img_14

Рис. 4.2. На рис. а полная длина волны умещается между двумя закрепленными концами струны. На рис. б между ними умещаются две полных длины волны (обертон на октаву выше). Но на рис. в и г мы видим, что иные длины волн – слегка увеличенная и слегка укороченная – невозможны, поскольку нарушается условие, согласно которому концы струны должны оставаться неподвижными

Рамка 4.1. Уровни энергии Водорода

Длина волны частицы в квантовой механике определяется как h/mv, где – это масса частицы, – ее скорость, а h – постоянная Планка = 6,63 × 10–34 Дж·c.

Радиус орбиты электрона в атоме Водорода: r = 5,29 × 10–11 м

Масса электрона: m = 9,11 × 10–31 кг

Скорость электрона на орбите: v = 2,18 × 106 м/с (примерно 0,7 % скорости света)

Таким образом, длина волны электрона составляет:

6,63 × 10–34 Дж·c / (9,11 × 10–31 кг × 2,18 × 106 м/с) = = 3,3 × 10–10 м

Длина окружности орбиты электрона составляет 2π × 5,29 × 10–11 м, что в точности равняется длине волны электрона в квантовой механике – орбита определяется одной целочисленной волной, охватывающей ее пределы.

Кинетическая энергия электрона = 1/2 mv2 = 1/2 × 9,11 × × 10–31 кг × (2,18 × 106 м/с)2 = 2,16 × 10–18 Дж.

2,16 × 10–18 Дж × 1 эВ / 1,6 × 10–19 Дж = 13,6 эВ, это и есть энергия связи на энергетическом уровне с номером n = 1 для H.

Длина волны электрона на энергетическом уровне с номером n = 2 точно в два раза больше, и вследствие этого то же самое справедливо для длины окружности его орбиты, благодаря чему радиус можно выразить как 2r. Напряженность электрического поля ослабевает как 1/квадрат расстояния, так что 1/(2r)2 = ¼ от энергии связи на энергетическом уровне с номером n = 1; то есть 1/(2r)2 = = 13,6 эВ/4 = 3,4 эВ.

Это означает, что при переходе с n = 2 на n = 1 выделяется энергия, равная разнице в 10,2 эВ, что мы и наблюдаем.

Таким образом, при n = 3 => 13,6 эВ/9 = 1,51 эВ; при n = 4 => 13,6 эВ/16 = 0,85 эВ и так далее (см. рис. 4.5).

Любую волну описывают две количественные характеристики – расстояние между двумя смежными гребнями (длина) и стремительность, с которой волна движется вперед (скорость). Если закрепить концы струны, скажем, между нижним порожком гитары и вашим пальцем, прижимающим ее на определенном ладу гитарного грифа, в этот интервал смогут встроиться лишь определенные длины волн, соответствующие «ноте», которую вы решите сыграть (см. рис. 4.2). Если удвоить длину струны, вы получите ноту на октаву4 ниже, поскольку теперь в промежутке идеально умещается волна вдвое большей длины.

Если немного расширить эту аналогию, электроны могут существовать только при таком расположении внутри атома, при котором между ними и ядром оказывается целое число длин их волн (см. рамку 4.1, в которой делается расчет для атома Водорода). В итоге электроны могут находиться на орбитах на определенных расстояниях от атомного ядра. Вследствие этого основные оболочки обозначаются как n = 1 для оболочки, ближайшей к ядру, n = 2 для следующей по направлению от ядра, n = 3 для еще более далекой и так далее. Как мы увидим впоследствии, эти оболочки соотносятся со строками Периодической таблицы.

И все же, пусть даже принцип «одна волна – одна оболочка» совершенно справедлив и истинен, с точными конфигурациями этих охватывающих волн все оказывается чуть более затруднительным, поскольку существует второе число, которое мы в силу необходимости должны присвоить каждому электрону. Оно соотносится с формой его орбиты (его орбитальным моментом, если говорить на языке физики). Мы обозначаем это число как l, и оно принимает значения 0 (для сферической формы), 1 (три орбиты, по форме напоминающие гантели, идущие в направлениях x, y и z), а потом – 2, 3, 4 и так далее, причем по мере возрастания значений числа орбиты становятся все более сложными. Эти незначительные различия в формах орбит у той или иной оболочки называются подоболочками, или подуровнями. И, наконец, как мы отмечали в третьей главе, каждый электрон подобен маленькой юле, которая вращается либо по часовой стрелке, либо против. Этот параметр мы определили как спин: s = + ½ или s = – ½.

В квантовом мире действует абсолютное правило: хотя все электроны обладают в точности одной и той же массой и в точности одним и тем же зарядом, никакие две частицы в атоме не могут быть во всех отношениях идентичными; иными словами, ни у каких двух электронов не могут полностью совпасть значения чисел n, l и s. Более того, каждой оболочке позволено иметь лишь определенное число подоболочек: на энергетическом уровне с номером n = 1 число l = 0; при n = 2 возможны значения l = 0 и l = 1; при n = 3 число l может равняться 0, 1 и 2 и так далее. Наконец, каждая форма орбиты (определяемая значением l) может содержать 2 × (2l + 1) электронов, где первая «2» призвана указать на один электрон со спином +½ и один со спином —½, а выражение в скобках отражает число возможных орбитальных форм, доступных на каждом l-уровне. Это распределение гарантирует, что двух одинаковых электронов не существует. Все подробности прояснит схема на рис. 4.3.

Ознакомительная версия. Доступно 16 из 81 стр.

Хелфанд Дэвид читать все книги автора по порядку

Хелфанд Дэвид - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.

Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту knigi.for.me@yandex.ru или заполнить форму обратной связи.